If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-225=0
a = 20; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·20·(-225)
Δ = 18000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18000}=\sqrt{3600*5}=\sqrt{3600}*\sqrt{5}=60\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{5}}{2*20}=\frac{0-60\sqrt{5}}{40} =-\frac{60\sqrt{5}}{40} =-\frac{3\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{5}}{2*20}=\frac{0+60\sqrt{5}}{40} =\frac{60\sqrt{5}}{40} =\frac{3\sqrt{5}}{2} $
| 4(3b-1)=9-1b | | 2-y/11=1 | | x^2-3x-1120=0 | | 2(x-4)+3=5x+8 | | 3x+15-5x=23 | | -1k-5k=-5k-4 | | 2x-3-4x=27 | | 17/50=33/x | | (x+2/3)-4=-1 | | -2/3-3x/2=-1/4 | | -2/3-3x/2=-1/4+2/3 | | 8+6-10=10x+11-4x | | -4(3x+8)=16-4x | | d+2=3 | | (1+x)^10=3.048423 | | -1/2w+1=-9w-6 | | 5a–3=12 | | 40-8x=3 | | 56=8(x-5) | | .40(5x+3)=-4x-6 | | 9x+23=122 | | X=4(1-x) | | 7-(x-5)=32 | | 2x+3/3x-2-4x/3x+2=0 | | 5.32=d/1.6 | | 6+(3x-5+7)=-(2x-1) | | 7-(x-50=32 | | 2(2m)+4(44m+2)=108 | | 5n^2+32=28n | | 3(u+7)=2(u+5) | | 2n+14=2n+5 | | -1/w+1=-9w-6 |